PolSAR image deep learning super-resolution model based on multi-scale attention mechanism

نویسندگان

چکیده

å ¨æžåŒ–åˆæˆå­”å¾„é›·è¾¾å½±åƒï¼ˆPolSARï¼‰å¯æä¾›ä¸°å¯Œçš„æžåŒ–ä¿¡æ¯ï¼Œä½†æˆåƒç³»ç»Ÿé™åˆ¶ä½¿å ¶ç©ºé—´åˆ†è¾¨çŽ‡å—åˆ°åˆ¶çº¦ã€‚ä¸ºæ­¤ï¼Œæœ¬æ–‡åŸºäºŽæ·±åº¦å­¦ä¹ æ¡†æž¶ï¼Œæå‡ºä¸€ç§åŸºäºŽå¤šå°ºåº¦æ³¨æ„åŠ›æœºåˆ¶çš„è¶ åˆ†è¾¨çŽ‡é‡å»ºç½‘ç»œï¼ˆMS-PSRN),通过对低分辨率PolSAR影像进行分辨率增强,生成高分辨率的PolSARå½±åƒã€‚åœ¨è¯¥æ¨¡åž‹æ¡†æž¶ä¸‹ï¼Œé‡‡ç”¨å¤šå°ºåº¦æ³¨æ„åŠ›æ¨¡å—å¯¹ä¸åŒå°ºåº¦ä¸‹çš„åœ°ç‰©ç›®æ ‡è¿›è¡Œç‰¹å¾æå–ï¼›æå‡ºè”åˆå¼ä¸Žåˆ†ç¦»å¼ä¸¤ç§å† åµŒæ–¹å¼ï¼Œåœ¨æ¨¡åž‹ä¸­åµŒå ¥é€šé“æ³¨æ„åŠ›ä¸Žç©ºé—´æ³¨æ„åŠ›ï¼Œåˆ©ç”¨æ³¨æ„åŠ›æœºåˆ¶çš„æƒå€¼é‡æ ¡å‡†ç‰¹æ€§ï¼Œå¢žå¼ºPolSARå½±åƒçš„æžåŒ–ä¿¡æ¯ä¸Žç©ºé—´ä¿¡æ¯ï¼›å¼•å ¥æ®‹å·®ä¿¡æ¯è’¸é¦æœºåˆ¶ï¼Œæå–åˆ¤åˆ«æ€§ç‰¹å¾å¹¶å¯¹æ¨¡åž‹å‚æ•°è¿›è¡ŒåŽ‹ç¼©ï¼›æå‡ºè‡ªé€‚åº”æŸå¤±å‡½æ•°å¯¹ç½‘ç»œè®­ç»ƒè¿‡ç¨‹è¿›è¡Œçº¦æŸä»¥æå‡æ¨¡åž‹çš„æ•°å€¼æ‹Ÿåˆèƒ½åŠ›ä»¥åŠè¾¹ç¼˜ä¿¡æ¯ä¿æŒèƒ½åŠ›ã€‚æœ¬æ–‡é‡‡ç”¨RADARSAT-2å«æ˜Ÿçš„æ¨¡æ‹Ÿæ•°æ®ä¸ŽçœŸå®žæ•°æ®ä¸¤ä¸ªæ•°æ®é›†å¯¹æå‡ºçš„æ–¹æ³•è¿›è¡ŒéªŒè¯ã€‚ç©ºé—´ä¿¡æ¯å®žéªŒç»“æžœè¡¨æ˜Žï¼Œæœ¬æ–‡æ–¹æ³•åœ¨ç›®è§†ç»“æžœä¸Žå®šé‡æŒ‡æ ‡ä¸­å‡ä¼˜äºŽå¯¹æ¯”ç®—æ³•ï¼Œå ·æœ‰æ›´é«˜çš„ç©ºé—´çº¹ç†ç»†èŠ‚é‡å»ºç²¾åº¦ä¸Žè¾ƒä½Žçš„é‡å»ºè¯¯å·®ã€‚æžåŒ–ä¿¡æ¯ä¿æŒæµ‹è¯•è¡¨æ˜Žï¼Œæœ¬æ–‡æ–¹æ³•å¯åœ¨æå‡ç©ºé—´åˆ†è¾¨çŽ‡çš„åŒæ—¶ï¼Œæœ‰æ•ˆä¿æŒPolSAR影像的极化信息。

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Super-Resolution Reconstruction Based On Multi-Dictionary Learning

In order to overcome the problems that the single dictionary cannot be adapted to variety types of images and the reconstruction quality couldn’t meet the application, we propose a novel Multi-Dictionary Learning algorithm for feature classification. The algorithm uses the orientation information of the low resolution image to guide the image patches in the database to classify, and designs the...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Depth Map Super-Resolution by Deep Multi-Scale Guidance

Depth boundaries often lose sharpness when upsampling from low-resolution (LR) depth maps especially at large upscaling factors. We present a new method to address the problem of depth map super resolution in which a high-resolution (HR) depth map is inferred from a LR depth map and an additional HR intensity image of the same scene. We propose a Multi-Scale Guided convolutional network (MSG-Ne...

متن کامل

Learning-Based Nonparametric Image Super-Resolution

We present a novel learning-based framework for zooming and recognizing images of digits obtained from vehicle registration plates, which have been blurred using an unknown kernel. We model the image as an undirected graphical model over image patches in which the compatibility functions are represented as nonparametric kernel densities. The crucial feature of this work is an iterative loop tha...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2023

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20233002